Tuesday, October 25, 2016

Banjir di kota Bandung ... kok bisa ya?

Senin kemarin (24/10/2016) selama dua jam hujan lebat mengguyur kota Bandung dari jam 11.30 sampai dengan 13.30 WIB dan tanpa diduga sebelumnya sebagian wilayah Bandung khususnya wilayah yang selama ini tidak pernah dilanda banjir besar mengalami banjir. Tidak tanggung-tanggung, ketinggiannya mencapai lebih dari satu meter. Pasteur atau jalan Junjunan yang merupakan mulut tol memasuki Bandung dilanda banjir besar. Dari banyak berita media sosial yang tersebar secara berantai menunjukkan bagaimana kendaraan seperti Livina terbawa arus dan di Pagarsih bahkan ada mobil dan kendaraan roda dua yang terbawa arus sungai. Sampai dengan malam ini masih ada kendaraan yang tidak diketemukan keberadaannya. Saat saya tulis postingan ini, hujan masih mengguyur kota Bandung meski tidak begitu deras. Sore tadi hujan cukup deras di beberapa tempat.
Siang tadi dalam kesempatan kuliah Meteorologi Tropis yang saya asuh, saya mengajak para mahasiswa untuk menganalisis kejadian tersebut, memberikan prediksi, dan memberikan solusi bagaimana sebaiknya ke depan bermitigasi dan beradaptasi terkait banjir. Waktu kuliah 2 jam serasa terlalu cepat untuk mencapai tujuan tersebut. Berikut ini sebagian analisis, prediksi dan solusi yang disampaikan oleh para mahasiswa.
"Menurut weather.meteo.itb.ac.id, curah hujan di kota Bandung pada tanggal 21 sampai dengan 24 Oktober 2016 tercatat masing-masing sebesar 17, 6, 13, dan 36 mm. Akumulasi jumlah curah hujan dalam beberapa hari tersebut merupakan salah satu penyebab terjadinya banjir di Bandung. Menurut BMKG, intensitas curah hujan ringan adalah sebesar 5-20 mm/hari dan curah hujan sedang sebesar 20-50 mm/hari. Data BMKG menyatakan bahwa pada hari kejadian (Senin), curah hujan tercatat 77,5 mm dalam waktu satu jam yang merupakan kategori sangat lebat. Berdasarkan citra satelit Himawari 8 (weather.is.kochi-u.ac.jp) menunjukkan bahwa pada hari kejadian, wilayah Jawa khususnya Jawa Barat tertutup awan rendah yang diduga adalah awan-awan yang berpotensi menimbulkan hujan yakni Nimbostratus dan Kumulus. Selain itu berdasarkan data bom.gov.au (BMKG nya Australia), nilai indeks IOD (Indian Ocean Dipole) adalah negatif yang berarti bahwa SST (temperatur permukaan laut) di wilayah Samudra Hindia bagian Timur (sebelah barat Sumatera ekuator) lebih hangat dibandingkan di Samudra Hindia bagian imur Afrika ekuator. Hal tersebut menyebabkan terjadinya konveksi tinggi dan proses penguapan lebih cepat yang memicu pembentukan awan konvektif yang menyebabkan hujan lebat. Selain itu, indeks osilasi selatan (SOI) menunjukkan nilai positif lebih dari 7. Ini menandakan bahwa di samudra Pasifik terjadi La Nina. Kejadian ini bertepatan dengan suhu permukaan laut di wilayah Indonesia yang lebih tinggi dengan anomali sebesar 0.5-1.5 oC di atas normal. Menurut earth.nullschool.net terdapat tekanan rendah di wilayah selatan Jawa. Dengan streamline yang mendukung, maka pembentukan awan-awan hujan memungkinkan terjadi di wilayah Jawa Barat khususnya Bandung.  Secara lokal, kelembapan relatif di ketinggian 850, 700, dan 500 milibar di atas Bandung pada waktu kemarin sebesar 82%, 84% dan 92% atau sangat tinggi. Ini makin mendukung terjadinya hujan.
Dari sudut lingkungan, hujan yang turun berturut-turut selama 6 hari kemungkinan menyebabkan tanah di daerah Lembang menjadi jenuh sehingga tidak mampu menampung air hujan lagi. Akibat tanah Lembang yang sudah jenuh maka air hujan akan menjadi limpasan (run off) yang menyebabkan debit air sungai Citepus menjadi meningkat drastis. Selain itu kondisi dari daerah Lembang sendiri yang memiliki rekahan di sekitar area sesar Lembang menyebabkan terjadinya kebocoran akuifer sehingga aliran airnya menjadi lebih cepat. Keadaan sungai Citepus yang dangkal akibat adanya sampah dan endapan erosi memperparah luapan aliran sehingga timbul banjir. Drainase perkotaan juga tidak berfungsi dengan baik sehingga air tidak mengalir dengan lancar. Perubahan tata guna lahan dari lahan hijau menjadi pemukiman di Bandung utara menjadikan air hujan tidak dapat maksimal mengalami proses infiltrasi dan perkolasi. Topografi mendukung adanya aliran air yang deras ke bagian lembah di wilayah Bandung bagian tengah dan selatan.  Seperti diakui juga oleh BPLHD Jabar bahwa kawasan seperti Pasteur, Pagarsih, Gedebage, dan Antapani merupakan kawasan terendah Bandung dimana diantara keempatnya Gedebage lah yang paling rendah. Dengan topografi yang demikian maka aliran air akan tertumpuk pada kawasan rendah tersebut. Pembangungan perumahan di sekitar Pasteur juga memberikan kontribusi bagi berkurangnya area resapan air.
Berdasarkan prediksi Accu weather untuk kondisi satu minggu ke depan, peluang curah hujan tertinggi terjadi pada tanggal 27 Oktober 2016 sebesar 23 mm, menyusul tanggal 28 Oktober sebesar 22 mm dengan peluang 70%. Pada tanggal tersebut peluang terjadinya guntur sebesar 60% dengan tutupan awan sebesar 96%. Dalam beberapa hari ke depan, tutupan awan di atas Bandung sebesar 81-98%. Berdasarkan indeks iklim BoM Australia, hingga bulan November mendatang, IOD masih bernilai negatif sehingga meningkatkan peluang terjadinya awan-awan konvektif di Indonesia bagian barat. Oleh karena itu maka hujan deras berpeluang besar terjadi di banyak tempat, termasuk Bandung. Hujan akan terus terjadi hingga puncak bulan basah (DJF) saat monsoon Asia menguat. Dengan kondisi yang dijelaskan di atas maka masih banyak peluang terjadinya banjir di kota Bandung bila tidak ada langkah-langkah sigap dalam mengatasinya. Early warning system pun harus dibangun agar tidak sampai timbul korban jiwa dan harta yang lebih banyak. Selain hal tersebut, berikut ini sejumlah langkah yang mungkin bisa ditempuh.
1. Rain harvesting
2. Penggalakan biopori dan sumur resapan
3. Pelebaran gorong-gorong, pembuatan tol air, dan normalisasi saluran drainase
4. Pembangunan pompa air di kawasan rawan banjir
5. Pemetaan kawasan rawan banjir
6. Kebijakan pengaturan tata guna lahan dan penataan kota
7. Reboisasi diperbanyak
8. Mendorong masyarakat untuk sadar lingkungan dan cuaca ekstrim.
Kira-kira demikian yang dibahas dalam waktu singkat tersebut. Tentu masih banyak hal yang belum terbahas atau terlewat". Salam waspada!!

Thursday, October 13, 2016

Bencana alam meteorologi

Bencana alam adalah bencana yang terjadi secara alami. Sehingga kalau kita melakukan pembakaran hutan dan menjadi kebakaran hebat, kebakaran semacam ini bukanlah bencana alam. Beberapa bencana alam meteorologi yang bisa disebut adalah bencana banjir, kekeringan, blizard, badai guntur, tornado, puting beliung, siklon, hujan es yang dahsyat dsb. Di antara bencana alam yang lain, bencana banjir merupakan contoh yang paling populer. Banjir di sini akibat dari meluapnya air dari selokan, kanal-kanal air dan sungai sehingga melanda kawasan di sekitarnya. Faktor penyebab meluapnya air tersebut adalah tingginya intensitas hujan yang terjadi. Fenomena yang terjadi di Pasifik tropis yang dikenal dengan La Nina, memperparah kejadian curah hujan di tanah air. Dipole mode yang terjadi di samudra Hindia yang menunjukkan pola negatif juga mendukung hal tersebut.
Kekeringan merupakan fenomena kebalikan dari banjir. Pada fenomena ini curah hujan jauh berkurang dari biasanya. Penyebab yang sering dikaitkan dengan kekeringan ini adalah El Nino yang terjadi di lautan Pasifik tropis. Saat El Nino, awan hujan di atas wilayah Indonesia bergeser ke arah timur. Apalagi biasanya perairan di wilayah kita dan sekitarnya mendingin, akibatnya sulit untuk  terbentuk hujan.
Blizard merupakan fenomena meteorologi di lintang tengah ketika angin dingin bertiup kencang, visibilitas rendah akibat banyak kabut dan salju.  Jadi merupakan hal yang wajar bila seringkali terjadi kecelakaan kendaraan saat blizard ini terjadi. Lihatlah contoh blizard  di bawah ini:
Badai guntur atau thunderstorm biasanya dipicu oleh awan-awan konvektif seperti kumulonimbus. Dalam awan semacam ini terjadi pemisahan muatan (+) dan (-) sehingga bisa terjadi loncatan muatan yang menyebabkan kilat dan petir baik di dalam awan tersebut, antar awan, maupun antara awan dengan permukaan. Pembahasan tentang petir ini akan disampaikan di waktu mendatang.
Puting beliung, tornado dan siklon merupakan fenomena meteorologi yang dahsyat namun dengan skala ruang/panjang dan waktu yang berbeda serta menyebabkan kerusakan dengan tingkat yang berbeda. Di antara ketiganya, siklon lah yang paling merusak. Di wilayah Indonesia, puting beliung merupakan siklon berskala kecil. 
Hujan es atau hail juga bisa dikatakan bencana alam bila cukup deras. Pada saat panas terik, awan-awan konvektif banyak terbentuk. Bila dalam awan konvektif tersebut terdapat zone dimana suhunya di bawah nol maka peluang terjadinya hujan es sangat besar. Rekor besarnya hail di dunia ini adalah mendekati 1 kg sehingga bila jatuh dan menimpa kaca mobil maka kaca mobil tersebut bisa berlubang.

Wednesday, October 5, 2016

Adakah hubungan antara monsoon, dipole mode dan ENSO??

Ketiga fenomena tersebut (Monsoon, Dipole Mode dan ENSO) sangat seksi untuk diteliti lebih jauh. Monsoon yang banyak berpengaruh pada musim yang bersirkulasi dalam arah utara - selatan (meridional) dan Dipole mode plus ENSO yang berpengaruh pada sirkulasi khususnya yang berarah barat - timur (zonal) seringkali berinteraksi secara unik. El Nino dan Dipole mode (+), El Nino dengan Dipole mode (-), La Nina dan Dipole mode (+), La Nina dan Dipole mode (-), yang berinteraksi dengan monsoon membuat suatu kondisi yang demikian kompleks. Dipole mode yang merupakan fenomena di samudra Hindia ekuator lebih berpengaruh pada sisi Indonesia bagian barat, sedangkan El Nino/La Nina banyak mempengaruhi musim di Indonesia bagian timur. Kedua fenomena tersebut masih belum diketahui bagaimana proses pembentukannya. Yang sudah diketahui dengan cukup baik adalah bagaimana perilaku dan dampak fenomena-fenomena tersebut pada cuaca dan musim di berbagai belahan dunia.
Akan menjadi bahan penelitian yang baik jika kita mampu menggambarkan bagaimana pola interaksi tersebut. Letak zona konvergensi dan divergensi yang ditandai dengan pola perawanan yang terjadi di kawasan tersebut merupakan hal yang sangat menarik untuk dikaji. Coba perhatikan gambar berikut ini. Ketika Dipole mode positif, suhu permukaan laut di wilayah Indonesia rendah sehingga sulit terbentuk awan. Sementara di sebelah timur Afrika ekuator suhu permukaan lautnya lebih tinggi sehingga mudah terbentuk perawanan. Hal yang berlawanan terjadi pada Dipole mode negatif. Wilayah Indonesia dan Australia banyak terbentuk awan.

Saat ini terlihat bahwa zona anomali suhu permukaan laut di Nino 3.4 menunjukkan negatif yang berarti bahwa La Nina sedang terjadi. Karena ini terjadi maka perawanan banyak terbentuk di atmosfer Indonesia. Kombinasi antara Dipole negatif, La Nina, dan monsoon (apalagi bila monsoon Asia) akan membawa pengaruh pembentukan awan hujan yang dahsyat. Beruntunglah bahwa kombinasi seperti ini jarang terjadi sehingga efeknya tidak terlalu dahsyat.
Tertarik untuk meneliti hal ini? Ayo kalau kita mau bersama-sama menelitinya.

Sunday, October 2, 2016

Mengapa sering hujan saat ini di tanah air ??

Bila melihat pola streamline saat ini, mungkin banyak orang berdasarkan buku-buku geografi dan ilmu bumi lainnya, bertanya-tanya ... cuaca di Indonesia seharusnya masih kurang hujan dan masih memasuki musim kemarau. Tapi mengapa ini tidak? Coba lihat link berikut


Angin masih bertiup dari arah tenggara/benua Australia. Tapi coba lihat di link berikut:

Terlihat bahwa bahwa banyak awan tebal yang berpotensi hujan banyak terserak di atas wilayah Indonesia. Wilayah pulau Jawa dan sebagian Sumatera praktis tertutup awan-awan penghasil hujan. Tidak heran di wilayah-wilayah tersebut banyak terjadi hujan dari ringan sampai sangat deras. Kota kalian mengalaminya?? Di Nusa Tenggara Barat dan Timur praktis tidak ada/tidak banyak awan-awan hujan seperti kumulonimbus dan nimbostratus. Oleh karena itu jika kalian saat ini terbang ke beberapa pulau di Indonesia, akan banyak mengalami guncangan pesawat. Tapi percayalah bahwa pesawat saat ini dilengkapi dengan teknologi mutakhir sehingga peluang terjadinya kecelakaan pesawat akibat faktor cuaca bisa diminimalisir.
Mengapa banyak awan di sebagian besar wilayah Indonesia? Ini tak lain karena menghangatnya temperatur permukaan laut di kawasan Indonesia dan sekitarnya, di atas 26oC. Dengan demikian maka terdapat proses transfer panas dan kebasahan ke udara dari permukaan air laut sehingga membentuk awan-awan.

Jadi sekali lagi wajarlah bahwa di wilayah kita banyak awannya yang terdorong oleh angin tenggara sampai barat daya ke atas daratan. Pengaruh topografi juga makin mendukung banyak hujan di bagian windward.
Dipole mode negatif juga mendukung terbentuknya perawanan di barat Sumatera. Kok bisa? Kenapa ya? Coba yang ini jawab ya.
Di Samudra Pasifik ekuator meskipun zona lidah dingin di daerah Nino 3.4 tidak begitu besar namun mengindikasikan masih adanya La Nina di wilayah ini. Coba lihat gambar berikut ini:

Pada saat La Nina biasanya memang wilayah atmosfer Indonesia bertekanan rendah sehingga makin memudahkan terbentuknya perawanan hujan. So sudah jelas khan? Itu saja dulu dech saat ini. Oh ya, masih ditunggu pertanyaan-pertanyaan tentang La Nina sampai pertengahan Oktober ya. Salam sukses selalu.